

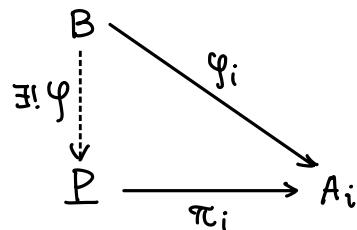
Chapter 2 Categories

§2.3 Products, Coproducts, and Universal Constructions

- Product
- Coproduct
- Free objects, initial and terminal objects, pull-back, push-out.

(I) Product

Def 3.1 For $\{A_i\}_{i \in I}$ in a given category \mathcal{C} , the product is defined as $(P, \{\pi_i\})$ with $P \in \text{Ob } \mathcal{C}$ and $\pi_i: P \rightarrow A_i$ a family of maps such that for any $(B, \{\varphi_i\})$ with $\varphi_i: B \rightarrow A_i$, there exists a unique $\varphi: B \rightarrow P$ s.t. $\pi_i \circ \varphi = \varphi_i$, $\forall i \in I$



We denote the product as $\prod_{i \in I} A_i$.

Prop 3.1 If $(P, \{\pi_i\})$ and $(Q, \{\psi_i\})$ are both product of $\{A_i\}_{i \in I}$, then they are isomorphic.

Proof. For each product, we have

$$\begin{array}{ccc} P & \xrightarrow{\pi_i} & A_i \\ \exists! \psi \downarrow & \nearrow \psi_i & \\ Q & & \end{array} \quad \begin{array}{ccc} Q & \xrightarrow{\psi_i} & A_i \\ \exists! \pi \downarrow & \nearrow \pi_i & \\ P & & \end{array}$$

Then

$$\begin{array}{ccc} P & \xrightarrow{\pi_i} & A_i \\ \psi \circ \pi \downarrow & \nearrow \pi_i & \\ P & & \end{array} \quad \begin{array}{ccc} P & \xrightarrow{\pi_i} & A_i \\ \text{id}_P \downarrow & \nearrow \pi_i & \\ P & & \end{array}$$

Uniqueness implies $\psi \circ \pi = \text{id}$. Similarly $\pi \circ \psi = \text{id}$.

Remark. Generally, for $\{A_i\}_{i \in I} \subseteq \text{Ob } \mathcal{C}$, there may not exist a product.

But for Abelian category, the product and coproduct always exist.

(II) Coproduct

Coproduct is dual concept to product.

Def 3.2 For $\{A_i\}_{i \in I} \subseteq \text{Ob } \mathcal{C}$, its coproduct is defined as $(S, \{l_i : A_i \rightarrow S\})$

which satisfies: for any $(B, \{\psi_i : A_i \rightarrow B\})$, there exists a unique ψ s.t.

$$\psi l_i = \psi_i :$$

$$\begin{array}{ccc} A_i & \xrightarrow{l_i} & S \\ & \searrow \psi_i & \downarrow \exists! \psi \\ & & B \end{array}$$

We denote the coproduct as $\coprod_{i \in I} A_i$.

Prop 3.2. If $(S, \{l_i\})$, $(S', \{l'_i\})$ are both coproducts of $\{A_i\}_{i \in I}$, then they are isomorphic.

Proof. Similar to Prop 3.1

Example 3.1. In module category Mod_R , product and coproduct are direct product and direct sum.

Example 3.2. In Set : (1) product = Cartesian product

(2) coproduct = disjoint union

(III) Some special objects.

1. Free object.

Def 3.3 A concrete category \mathcal{C} is a category that is equipped with a (faithful) functor to the Set category. More precisely:

(1) Every object A is assigned with a set $\mathcal{G}(A)$.

(2) Every map $A \xrightarrow{f} B$ is assigned with a set map $\mathcal{G}(A) \rightarrow \mathcal{G}(B)$.

$$(3) \quad \text{id}_A = \text{id}_{\mathcal{C}(A)}$$

$$(4) \quad \mathcal{C}(f \circ g) = \mathcal{C}(f) \circ \mathcal{C}(g)$$

$$A \xrightarrow{g} B \xrightarrow{f} \quad \text{and} \quad \mathcal{C}(A) \xrightarrow{\mathcal{C}(f)} \mathcal{C}(B) \xrightarrow{\mathcal{C}(g)} \mathcal{C}(C)$$

Remark. In concrete category, we can regard object as a set equipped with some additional structure.

Example: Grp , Ring , Vect , Mod_R are all concrete categories.

Recall that for free module M and its basis X , consider the inclusion $l: X \hookrightarrow M$, then for any module N and set map $f: X \rightarrow N$, there exists unique \tilde{f} s.t. $f = \tilde{f} \circ l$.

$$\begin{array}{ccc} X & \xleftarrow{l} & M \\ & \searrow f & \downarrow \exists! \tilde{f} \\ & & N \end{array}$$

This inspire the following definition of free objects.

Def 3.4 Let V be an object of some concrete category \mathcal{C} , $i: X \rightarrow V$ is a set map. If for any object $A \in \text{Ob } \mathcal{C}$ and set map $f: X \rightarrow A$, there is a unique $\tilde{f}: V \rightarrow A$ s.t. $f = \tilde{f} \circ i$, then V is called a free object over X .

$$\begin{array}{ccc} X & \xrightarrow{i} & V \\ & \searrow f & \downarrow \exists! \tilde{f} \\ & & A \end{array}$$

Example. free module is free object in Mod_R .

Prop 3.3 Let \mathcal{C} be a concrete category and V be a free object over X , V' be a free object over X' , if $|X| = |X'|$, then $V \cong V'$.

Proof. Exercise.

2. Initial and terminal object.

Def 3.5 For a category \mathcal{C}

means \uparrow $A \xrightarrow{f} B$ exists & unique

- (1) A is called an initial object if for any B , $\# \text{Hom}(A, B) = 1$.
- (2) A is called a terminal object if for any B , $\# \text{Hom}(B, A) = 1$.
- (3) A is called a zero or null object if it is initial and terminal.

Prop Initial, terminal and zero object, if exist, must be unique up to isomorphisms.

Proof. Exercise.

Example. In Set , \emptyset is initial and $\{\ast\}$ is terminal.

Example. In Grp , $\{1\}$ is zero object.

Example. In $\text{Mod}_{\mathbb{R}}$, $\{0\}$ is zero object.

3. Product and coproduct as terminal and initial object.

- Let \mathcal{C} be a category, $A_1, A_2 \in \text{Ob } \mathcal{C}$. Define

$$\text{Ob}(\mathcal{C}/\{A_1, A_2\}) = \{X, f_1, f_2 \mid X \in \text{Ob } \mathcal{C}, f_i \in \text{Hom}(X, A_i), i=1,2\}.$$

$$\text{Hom}_{\mathcal{C}/\{A_1, A_2\}}((X, f_1, f_2), (Y, g_1, g_2)) = \{h \in \text{Hom}(X, Y) \mid g_i h = f_i, i=1,2\}.$$

$$\begin{array}{ccccc} & & X & & \\ & \swarrow f_1 & \downarrow h & \searrow f_2 & \\ A_1 & & Y & & A_2 \\ & \uparrow g_1 & & \downarrow g_2 & \end{array}$$

$\mathcal{C}/\{A_1, A_2\}$ is a category.

Prop. Terminal object in $\mathcal{C}/\{A_1, A_2\}$ is product of A_1, A_2 in \mathcal{C} .

Proof. Terminal (P, π_1, π_2)

For any (B, f_1, f_2) , there exists unique f such that

$$\begin{array}{ccccc} & & B & & \\ & \swarrow f_1 & \downarrow \exists! f & \searrow f_2 & \\ A_1 & & P & & A_2 \\ & \uparrow \pi_1 & & \downarrow & \searrow \pi_2 \\ & & P & & \end{array}$$

- Similarly, we can define $\mathcal{C}/\{A_1, A_2\}$ for coproduct

$$\begin{aligned} \text{ob } \mathcal{C}/\{A_1, A_2\} &= \{ (X, f_1, f_2) \mid X \in \text{ob } \mathcal{C}, f_i \in \text{Hom}(A_i, X), i=1, 2 \}. \\ \text{Hom}_{\mathcal{C}/\{A_1, A_2\}}((X, f_1, f_2), (Y, g_1, g_2)) &= \{ h \in \text{Hom}(X, Y) \mid h f_i = g_i, i=1, 2 \}. \end{aligned}$$

$$\begin{array}{ccccc} & & X & & \\ & f_1 \nearrow & \downarrow & \swarrow f_2 & \\ A_1 & & h & & A_2 \\ & g_1 \searrow & \downarrow & \swarrow g_2 & \\ & & Y & & \end{array}$$

Prop In above $\mathcal{C}/\{A_1, A_2\}$, the initial object is coproduct of A_1 and A_2 in the category \mathcal{C} .

Proof. Exercise.

4. Free object as initial object.

For concrete category \mathcal{C} and a set X , we could define a category $\text{Hom}(X, \mathcal{C})$.

- $\text{ob } \text{Hom}(X, \mathcal{C}) = \bigcup_{A \in \text{ob } \mathcal{C}} \text{Hom}_{\mathcal{C}}(X, A)$
- Map between $X \xrightarrow{f} A$ and $X \xrightarrow{g} B$ is

$$\begin{array}{ccc} & f \nearrow & A \\ X & \downarrow h & \\ & g \searrow & B \end{array}$$

Prop In $\text{Hom}(X, \mathcal{C})$, an initial object is a free object over X in \mathcal{C} .

Proof. Exercise.

5. Pull-back

Consider a category \mathcal{C} and two maps with the same codomain

$$\begin{array}{ccc} A_1 & \xrightarrow{\varphi_1} & C \\ A_2 & \xrightarrow{\varphi_2} & \end{array}$$

we define a category \mathcal{D} as follows:

- $\text{Ob } \mathcal{D} = \{ (X, f_1, f_2) \mid X \in \text{Ob } \mathcal{C}, f_i \in \text{Hom}(X, A_i), i=1,2, g_1 f_1 = g_2 f_2 \}$

$$\begin{array}{ccc} & f_1 & \\ X & \nearrow & \downarrow \varphi_1 \\ & A_1 & \\ & f_2 & \searrow \\ & A_2 & \downarrow \varphi_2 \\ & & C \end{array}$$

- $\text{Hom}_{\mathcal{D}}(X, f_1, f_2), (Y, g_1, g_2) = \{ h \in \text{Hom}_{\mathcal{C}}(X, Y) \mid g_i h = f_i, i=1,2 \}$.

$$\begin{array}{ccccc} & f_1 & & & \\ & \curvearrowright & & & \\ X & \xrightarrow{h} & Y & \xrightarrow{g_1} & A_1 \xrightarrow{\varphi_1} C \\ & f_2 & \curvearrowright & g_2 & \searrow \\ & & & & A_2 \xrightarrow{\varphi_2} C \end{array}$$

In this category, a terminal object (if exist) is called a pull-back of (φ_1, φ_2) .

In other words, a pull-back is (Z, p_1, p_2) such that for any (X, f_1, f_2) satisfying $g_i f_1 = g_2 f_2$, there exists unique $h: X \rightarrow Z$ s.t. $p_i h = f_i, i=1,2$

$$\begin{array}{ccccc} & f_1 & & & \\ & \curvearrowright & & & \\ X & \xrightarrow{\exists! h} & Z & \xrightarrow{p_1} & A_1 \xrightarrow{\varphi_1} C \\ & f_2 & \curvearrowright & p_2 & \searrow \\ & & & & A_2 \xrightarrow{\varphi_2} C \end{array}$$

This is also called fiber product $A_1 \times_C A_2$.

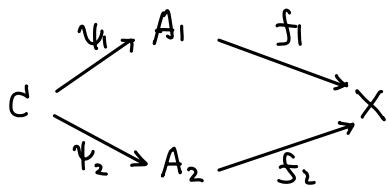
6. Push-out

Consider a category \mathcal{C} and two maps with the same domain

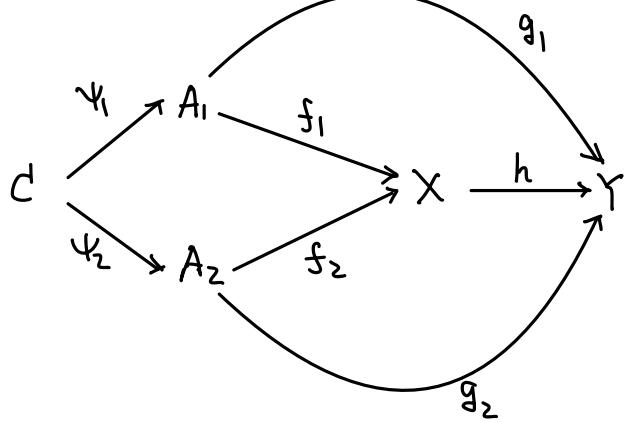
$$\begin{array}{ccc} & \varphi_1 & \\ C & \swarrow & \downarrow \\ & \varphi_2 & \searrow \\ & & A_2 \end{array}$$

We define a category \mathcal{D} as follows

- $\text{Ob } \mathcal{D} = \{ (X, f_1, f_2) \mid X \in \text{Ob } \mathcal{C}, f_i \in \text{Hom}(A_i, X), i=1,2, f_1 \psi_i = f_2 \psi_i \}$

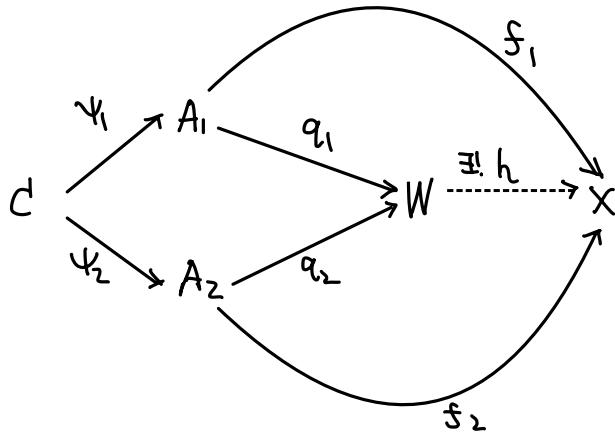


- $\text{Hom}_{\mathcal{D}}((X, f_1, f_2), (Y, g_1, g_2)) = \{ h \in \text{Hom}_{\mathcal{C}}(X, Y) \mid g_i = h f_i, i=1,2 \}$



The initial object (W, q_1, q_2) in \mathcal{D} is called push-out of ψ_1 and ψ_2 .

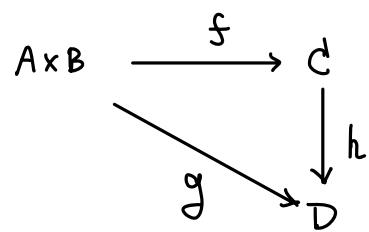
In other words, a push-out (W, q_1, q_2) satisfies that: for any (X, f_1, f_2) with $f_1 \psi_1 = f_2 \psi_2$, there is a unique $h: W \rightarrow X$ such that $h q_i = f_i$.



7. Tensor product as initial objects

Consider module category Mod_R , fix $A, B \in \text{Mod}_R$, we define a category $\mathcal{B}(A, B)$ as follows:

- $\text{Ob } \mathcal{B}(A, B) = \{ \text{bilinear } f: A \times B \rightarrow C, C \in \text{Mod}_R \}$
- $\text{Hom}_{\mathcal{B}(A, B)}(f, g) = \{ h \in \text{Hom}_{\text{Mod}_R}(C, D) \mid g = h f \}$.



Then tensor product $A \otimes_R B$ is an initial object in $\mathcal{B}(A, B)$.

